Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research

By Heather Buschman, Ph.D.
January 3, 2013

New collaboration combines Sanford-Burnham’s renowned scientific team and Intrexon’s proprietary discovery platforms to accelerate human induced pluripotent stem cell (iPSC) research

Today, we announced a new collaboration with Intrexon Corporation, a leading synthetic biology company, aimed at accelerating stem cell research. Under the agreement, Sanford-Burnham will gain access to sophisticated proprietary cellular selection and gene regulation technologies that are not currently on the market, including Intrexon’s Laser-Enabled Analysis and Processing (LEAP) instrument and RheoSwitch Therapeutic System® (RTS®). As part of the agreement, Intrexon may obtain commercial and intellectual property rights resulting from technological advances made under the collaboration.

“I’m looking forward to merging and melding our expertise,” said Evan Y. Snyder, M.D., Ph.D., professor and director of Sanford-Burnham’s Stem Cell Research Center and Stem Cell and Regenerative Biology Program. “We’ll bring our iPSC and gene therapy expertise to the table. Likewise, our colleagues at Intrexon will share their knowledge of how best to use the technologies. We envision we’ll be meeting with them frequently and sharing insights to further advance the platforms for stem cell applications.”

Sanford-Burnham is currently building the world’s largest collection of human iPSCs generated from individual patients and healthy volunteers. The Stem Cell Research Center’s expertise and resources are available to all Sanford-Burnham scientists, as well as other researchers at nonprofit and for-profit research organizations around the world.

LEAP for induced pluripotent stem cells

The LEAP instrument is an automated system that provides high-throughput cell imaging coupled with versatile laser-based cell processing. The instrument’s applications include rapid and accurate in situ purification of adherent cells and cell colonies, features that are particularly useful when working with complex human iPSC cultures. The LEAP instrument enables scientists in Sanford-Burnham’s Stem Cell Research Center to improve and accelerate their methods for generating human iPSCs and their differentiated progeny, which are used in the study of a variety of diseases. iPSCs are stem cells derived from adult cells—a research advance that garnered the 2012 Nobel Prize in Physiology or Medicine.

“Intrexon’s LEAP instrument will allow us to isolate high-quality human iPSCs while eliminating non- or partially-reprogrammed cells or other undesirable cell types in the culture—a laborious process that previously took a trained technician a lot of time,” explained Yang Liu, Ph.D., manager of Sanford-Burnham’s Stem Cell Research Center. “Together with other automated equipment available in our facility, the new capabilities will free up valuable resources, allowing us to provide an even greater level of service to our internal and external users.”

“We are big believers in iPSCs and their potential for use in new therapeutic modalities,” said Fred Koller, Ph.D., vice president and executive director of the Intrexon Institute for Biomolecular Research. “It’s exciting for us to use our technology collaboratively with Sanford-Burnham’s team of premier scientists. We look forward to applying LEAP, RTS® and other Intrexon tools in this stem cell research, and are proud to assist in the diverse medical advancements enabled by this collaborative effort with Sanford-Burnham.”

Controlling gene expression with RTS®

Evan Snyder, M.D., Ph.D.

RTS® technology, a proprietary biological “switch” that enables inducible controlled gene expression by administering an activator ligand, will give Sanford-Burnham scientists a new method to regulate when certain genes are turned on or off in cells. The system also provides more accurate delivery of new therapeutic candidates to specific tissues in animal models.

“We’re interested in the RTS®technology because it will help us to turn genes on or off in stem cells that have been transplanted. For example, it can be used for therapeutic protein expression in stem cells that home to and help eradicate brain tumors,” said Snyder.

“New cell-based therapies may someday result from our LEAP and RTS® technologies,” Koller said. “Working with leaders in the field of academic stem cell research will leverage both parties’ technologies to get there faster.”


Media contact:
Heather Buschman, Ph.D.
Sanford-Burnham Medical Research Institute

(858) 795-5343

Corporate contact:
Marie L. Rossi, Ph.D.
Intrexon Corporation

(301) 556-9944

Facebook Comments

About Author

Heather Buschman, Ph.D.

Heather was an SBP Communications staff member.


Leave A Reply



* Copy This Password *

* Type Or Paste Password Here *

29,937 Spam Comments Blocked so far by Spam Free Wordpress